

Studymate Foundation Paper

pulsory. ed ONE mark for each correct res e total score will be made if no res orrect response for each question	-			x
ed ONE mark for each correct res e total score will be made if no res orrect response for each question	-			
onse and marks for wrong response ot allowed.	n. Filling up M	ORE THAN ON		
Section	n A – Sci	ence		
is drawn by a filament of of the filament in 16 sec			r of electron	s passing through
(b) 10 ¹⁶	(c)	1018	(d) 1	023
lowing represents voltag	ge?			
e me	(b)	work done ×	charge	
× time tt	(d)	work done ×	charge × ti	me
es out an experiment and s R_1 , R_2 and R_3 respectiv				s of nichrome wire
I	R ₁ R ₂	R₃ ✓		
(b) $R_1 > R_2 > R_3$			(d) F	$R_{3} > R_{2} > R_{1}$
conductor of length <i>l</i> an ctor of length 2 <i>l</i> and resis				
(b) 3A/2	(c)	2A	(d) 3	BA
loes not change if l is changed.				
8	1			
-				
-	-	ew resistance	of this wire	is
ne wire is doubled on its				-00Ω
	ature is changed. If the resistor is changed al and temperature are	ature is changed. If the resistor is changed. Ial and temperature are changed.	ature is changed. If the resistor is changed. ial and temperature are changed.	ature is changed. of the resistor is changed. ial and temperature are changed. ne wire is doubled on itself. The new resistance of this wire

- 7. Magnetic induction does not involve
 - (a) placing a magnetic material near a magnet.
 - (b) touching a magnetic material with a magnet.
 - (c) induction of opposite pole on the nearer side of magnetic material facing the magnet.
 - (d) induction of similar pole on the farther side of magnetic material away from the magnet.
- **8.** Electrons are going around a circle in an anticlockwise direction as shown. At the center of the circle, they produce a magnetic field that is

(d) to the right

9. Commercial electric motors do not use

(a) into the page

- (a) an electromagnet to rotate the armature.
- (b) effectively large number of turns of conducting wire in the current-carrying coil.
- (c) a permanent magnetic to rotate the armature.
- (d) a soft iron core on which the coil is wound.
- **10.** Choose the incorrect statement
 - (a) Fleming's right-hand rule is a simple rule to know the direction of induced current.
 - (b) The right-hand thumb rule is used to find the direction of magnetic fields due to currentcarrying conductors.
 - (c) The difference between the direct and alternating currents is that the direct current always flows in one direction, whereas the alternating current reverses its direction periodically.
 - (d) In India, the AC changes direction after every 1/50 second.
- **11.** The most important safety method used for protecting home appliances from short-circuiting or overloading is
 - (a) earthing (b) use of fuse
 - (c) use of stabilizers (d) use of electric meter
- **12.** In a hydroelectric power plant, more electrical power can be generated if water falls from a greater height because
 - (a) its temperature increases.
 - (b) larger amount of potential energy is converted into kinetic energy.
 - (c) the electricity content of water increases with height.
 - (d) more water molecules dissociate into ions.
- **13.** The major problem in harnessing nuclear energy is how to
 - (a) split nuclei?
 - (b) sustain the reaction?
 - (c) dispose off spent fuel safely?
 - (d) convert nuclear energy into electrial energy?
- **14.** Choose the correct statement
 - (a) Sun is an expensive source of energy.
 - (b) There is infinite storage of fossil fuel inside the earth.
 - (c) Hydro and wind energy plants are renewable sources of energy.
 - (d) Waste from a nuclear power plant can be easily disposed off.

15. The power of a lens is – 3.5 D. The lens is (a) Convex (b) Plano-convex (c) Concave (d) Plano-concave **16.** Sodium carbonate solution is added to dilute ethanoic acid. It is observed that: (a) A gas evolves (b) A solid settles at the bottom (c) The mixture becomes warm (d) The colour of the mixture 17. 2ml of acetic acid is added to 5ml of water and was shaken up for 1minute, it was noticed that: (a) The acid formed a separate layer on the top of water (b) A clear and homogeneous solution is formed (c) Water formed a separate layer on the top of the acid (d) A pink and clear solution is formed **18.** Which of the following is the correct order of size: (a) $I^+ > I^- > I$ (b) $I^- > I > I^+$ (c) $I > I^+ > I^-$ (d) $I > I^- > I^+$ **19.** Chemical changes are _____. (a) temporary, reversible and a new substance is produced. (b) always accompanied by exchange of light (c) permanent, irrevarsible and a new substance is produced. (d) never accompanied by exchange of light and heat energy. **20.** In one molecule of ammonium sulphide there are (a) 2 atoms of N, 8 atoms of H, and 1 atoms of S (b) 1 atom of N, 4 atoms of H, and 1 atom of S (c) 1 atom of N, 4 atoms of H, and 2 atoms of S (d) 2 atoms of N, 8 atoms of H, and 2 atoms of S **21.** Wheih of the following is not a mineral acid? (a) Hydrochloric acid (b) Citric acid (c) Sulphuric acid (d) Nitric acid **22.** What happens when a solution of an acid ismixed with a solution of a base in a test tube? (i) The temperature of the solution increases generally. (ii) The temperature of the solution decreases. (iii) The temperature of the solution remains the same. (iv) Salt formation takes places. (b) (i) and (iii) (c) (ii) and (iii) (a) (i) only (d) (i) and (iv) **23.** Which of the following method is not used in preparing a base? (a) Burning of metal in air. (b) Adding water to a metal oxide. (c) Reaction between an acid and base. (d) Heating metal carbonates. **24.** The correctly balanced equation for FeS + $O_2 \rightarrow Fe_2O_3 + SO_2$ is ______. (a) $2\text{FeS} + \text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 + 4\text{SO}_2$ (b) $2\text{FeS} + 3\text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 + 4\text{SO}_2$ (c) $4\text{FeS} + 4\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 2\text{SO}_2$ (d) $4\text{FeS} + 7\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 4\text{SO}_2$ 25. Which of the following is not a decomposition reaction? (a) $CaCO_3 \rightarrow CaO + CO_2$ (b) $2KClO_3 \rightarrow 2KCl + 3O_2$ (c) Digestion of food in the body (d) $H_2 + Cl_2 \rightarrow 2HCl$ **26.** What happens when dilute hydrochloric acid is added to iron fillings? (a) Hydrogen gas and iron chloride are produced. (b) Chlorine gas and iron hydroxide are produced. (c) No eraction takes palce.

STUDY

(d) Iron salt and water are produced.

STUDY mate helps excel in boards

7.	The most abundant n	netal i	n the earth crus	st is?						
	(a) Al	(b)	Fe	(c)	0	(d)	Cu			
3.	Because of high elect	roposi	tivity, the atom	of meta	als can easily form	n				
	(a) Positive ions	(b)	Negatively ions	s (c)	Neutral ions	(d)	Covalent bonds			
9.	What happens when	calciu	m is treated wit	h water	?					
	(i) It does not react with water									
	(ii) It reacts violently with water									
	(iii) It reacts less violently with water									
	(iv) Bubbles of hydrog	gen ga	s formed stick t	o the su	rgace of calcium					
	(a) (i) and (iv)	(b)	(ii) and (iii)	(c)	(i) and (ii)	(d)	(iii) and (iv)			
0.	The composition of ac	qua-re	gia is							
	(a) Dil.HCl:Conc.HN	NO ₃		(b)	Conc. HCl : dil. H	INO ₃				
	(c) Conc. HCl : Conc.	HNO ₃		(d)	Dil. HCl : Dil. HN	NO ³				
1.	When carbon monoxide combines with haemoglobin it forms									
	(A) Oxyhaemoglobin		(B)	Carbonic Acid						
	(C) Carboxyhaemoglo	bin		(D)	Carbaminohaem	noglob	in			
2.	Heart failure is									
	(A) Heart stops functioning									
	(B) Sufficient amount of blood is not pumped by the heart									
	(C) Oxygen is less in the environment									
	(D) Both A and B									
3.	Stress hormone in plants is									
	(A) Auxin	(B)	Cytokinin	(C)	Abscisic acid	(D)	Ethylene			
4.	Who among the follow	ving w	on the Stockhol	m Wate	er Prize.					
	(A) Dr Rajender Prasad (B) Raja Ramanna									
	(C) Har Govind Khorana (D) Dr. Rajendra Singh									
5.	The offspring resulting	g from	a cross between	two pu	re homozygous re	cessiv	es would be			
	(A) 50% homozygous recessive and 50% homozygous dominant									
	(B) 75% homozygous recessive and 25% heterozygous dominant									
	(C) 75% homozygous recessive and 25% homozygous dominant									
	(D) 100% homozygous recessive									
6.	The testis descend out of the abdominal cavity during the stages of development because									
	(A) Space is not enough for the development of the testis									
	(B) Spermatogenesis require higher temperature than the body temperature									
	(C) Testis are overprotected.									
	(D) Spermatogenesis require lower temperature than the body temperature									
7.	The concept of 'Biospl	here R	eserve' was evo	lved by						
	(A) Government of In			(B)	Botanical Surve	y of In	dia			
	(C) UNESCO			(D)	UNDP	-				
				. ,						
8.		s to th	e species of							
8.	Human being belongs (A) Homo erectus	s to th	e species of	· (B)	Homo habillis					

			helps excel in bo
39.	An endothermic reaction using sunlight in the	e pla	ints produces two compounds X and Y.T.
	two compounds produced are		
			$X-C_{6}H_{12}O_{6}, Y-O_{2}$
	(C) X-Carbon Dioxide, $Y-O_2$	(D)	$X-C_{6}H_{12}O_{6}, Y-H_{2}O$
0.	When Carbon Dioxide is passed through Lime	wat	er it turns milky because of
	(A) the formation of soluble Calcium Carbonat	te	
	(B) the displacement of Calcium		
	(C) the formation of Calcium Oxide		
	(D) the formation of insoluble Calcium Carbon	nate	
1.	Heredity or inheritance of specific traits becar	ne c	learer due to
	(A) Lamarck's theory	(B)	Mendel worked on garden peas
	(C) Darwinism	(D)	Neo-Darwinism
2.	Prenatal sex determination is banned by the la	aw ii	n India because of the-
	(A) High cost charged by the doctor	(B)	Increase in case of male foeticide
	(C) Possible danger of mother's health	(D)	Increase in case of female foeticide
3.		• •	nere maximum absorption of digested fo
	takes place		1 0
	(A) Duodenum (B) Colon	(C)	Jejenum (D) Ileum
4.	Trophic level in an ecosystem represents		
	(A) oxygen level (B) water level	(C)	energy level (D) salt level
5.	In Drosophila the diploid number is 8. How ma sperm?	ny c	chromosomes are present in the Drosoph
	(A) 8	(B)	4
	(C) cannot determine from this information	(D)	16
	Section – B (Ma	athe	ematics)
6.	The length of tangents drawn from an external	1 poi	int to a circle are
	(a) equal (b) one third	(c)	one fourth (d) half
7.	A point P is 26 cm away from the centre of a circ		and the length of the tanget drawn from P
	the circle is 24 cm. Find the radius of the circle		
	A		
			→P
	Ŏ		
	(a) 10 cm (b) 11 cm	(c)	16 cm (d) 15 cm
8.	To construct a triangle similar to a given $\triangle ABC$	C wit	th its sides $\frac{2}{r}$ of the corresponding sides
	ΔABC , first draw a ray BX such that angle CBX	is a	0
	BX is	(c)	5 (d) 2

49. To draw a pair of tangents to a circle which are inclined to each otehr at an angle of 30°, it is required to draw tangents at end points of those two radii of the circle. The angle between them, should be

(a) 150° (b) 90° (c) 60° (d) 120°

50.	The areas of the two o	rcles	are in the ratio 4	4:9.	The ratio of their	circu	amference is	
	(a) 2:3	(b)	4:9	(c)	9:4	(d)	None of these	
51.	The value of p so that	the qu	uadratic equation	n x^2 + 5 px + 16 = 0 has no real roots, is				
	(a) $-\frac{8}{5}$	<i>(</i> 1.)		()		(1)	$-\frac{8}{5} \le p \le 0$	
	(a) $-\frac{1}{5}$	(D)	p < 5	(C)	<i>p</i> < 8	(a)	$-\frac{1}{5} \leq p \leq 0$	
52.	If a , $a - 2$ and $3a$ are is	n A.P.	, then the value o	of <i>a</i> is				
	(a) –2	(b)	-3	(c)	3	(d)	2	
53.	The ratio of the length	ofai	rod and its shadow	w is j	$1:\sqrt{3}$. The angle of	f elev	vation of the sum is	
	(a) 30°	(b)	60°	(c)	45°	(d)	None of these	
54.	What is the angle of e	levati	on of the sun whe	en th	e length of the sh	adow	v of a vertical pole is	
	equal to its height?							
	(a) 45°	(b)	60°	(c)	30°	(d)	None of these	
55.	A tower is 50m high. It it is 30°. Find the valu			shorte	er when the sun's	altitu	ıde is 45° than when	
	_		200					
	(a) $50(\sqrt{3}-1)m$	(b)	$\overline{\sqrt{3}}$ m	(c)	$100\sqrt{3}$ m	(d)	None of these	
56.	If the zeros of the quad	dratic	polynomial ax^2 +	bx +	c, where $a \neq 0$ and	d <i>c</i> ≠	0, are equal, then	
	(a) c and a have the s	same	sign	(b)	<i>c</i> and <i>a</i> have opp	osite	signs	
	(c) c and b have the s	same	sign	(d)	<i>c</i> and <i>a</i> have opp	osite	signs	
57.	The zeroes of the quad	lratic	polynomial $x^2 + k$.	x + k	where $k > 0$			
	(a) are both positive			(b)	are both negativ	e		
	(c) are always equal			(d)	are always uneq	ual		
58.	On dividing a polynom the reminder, then $p(x)$				omial $q(x)$, let $q(x)$ l	be the	e quotient and r(x) be	
	(a) $r(x) = 0$ always	, 10			$\deg r(x) < \deg g(x)$) alwa	ays	
	(c) either $r(x) = 0$ or defined on the formula $r(x) = 0$ or defined on the formula $r(x) = 0$ or defined on the formula $r(x) = 0$ or $r(x)$	eg r(x)					-	
59 .	For what value of <i>k</i> do	the e	quations $kx - 2y =$	3 and	d 3 $x + y = 5$ repres	ent t	wo lines intersecting	
	at a unique point?							
	(a) $k = 3$			()	<i>k</i> = – 3			
	(c) $k = 6$				all real values ex			
60.	One equation of a pair							
			-10x - 4y + 8 = 0					
61.	A steel wire when ben is bent in the form of		=			21 sc	q. cm. The same wire	
	(a) 111 cm^2	(b)	84 cm ²	(c)	259 cm^2	(d)	154 cm^2	
62.	If the HCF of 65 and 1	17 is (of the form (65m –	- 117)	, then $m =$			
	(a) 1	(b)	2	(c)	3	(d)	4	
63.	For some positive inte	ger n	, every positive od	ld int	eger is of the form	1		
	(a) $n-1$	(b)	<i>n</i> + 1	(c)	2n	(d)	2 <i>n</i> +1	
64.	A positive integer n where $(3n-1)$ is divided by 9		vided by 9, gives 7	' as re	emainder. What w	ill be	the remainder when	
	(a) 1	(b)	2	(c)	3	(d)	4	
65.	If one zero of the quad	ratic	polynomial $kx^2 + 3$	3x + p	t is 2, then the va	lue of	fkis	
	_						_	
	(a) $\frac{5}{6}$	(b)	$\frac{-5}{6}$	(c)	$\frac{6}{5}$	(d)	$\frac{-6}{5}$	

66.	The line segments joining the midpoints of the sides of a triangle form four triangles, each of which is								
	(a) congruent to the original triangle			(b)	similar to the original triangle				
	(c) an isosceles triang	le		(d)	an equilateral tri	e			
67.	If $(\tan^2 45^\circ - \cos^2 30^\circ) = 3$	x sin	45° cos 45°, then .	<i>x</i> =					
	(a)	ക്ര	-2	(c)	<u>1</u>	(പ)	$\frac{-1}{2}$		
	(a) 2	. ,	-2	(C)	2	(u)	2		
68.	If $\tan x = 3\cot x$, then x		500		200	(1)	4 = 0		
	(a) 45°	• •	60°	(c)	30°	(d)	15°		
69.	If $\sin \alpha = \frac{1}{2}$ and $\cos \beta = \frac{1}{2}$	1 , , th	nen ($\alpha + \beta$) =						
	(a) 0°		30°	(c)	60°	(d)	90°		
70.	If $\cos A + \cos^2 A = 1$, the	• •		(0)	00	(u)	50		
	1								
	(a) $\frac{1}{2}$	(b)	2	(c)	1	(d)	4		
71.	The pair of equations y	= 0	and $y = -5$ has						
	(a) one solution			(b)	two solutions				
	(c) infinitely many solution	utio	ns	(d)	no solution				
72.	In a $\triangle ABC$, $\angle C = 3 \angle B =$	2 (∠	$(A + \angle B)$, then $\angle B =$: ?					
	(a) 20°	(b)	40°	(c)	60°	(d)	80°		
73.	In $\triangle ABC$ and $\triangle DEF$, it is	s oir	ven that $\frac{AB}{AB} = \frac{BC}{BC}$.	ther	1				
70.			22 12			(1)			
74	(a) $\angle B = \angle E$				$\angle B = \angle D$	• •	$\angle A = \angle F$		
74.	If $\triangle ABC \sim \triangle EDF$ and $\triangle A$ (a) BC.EF = AC.FD		AB.EF = AC.DE				BC.DE = AB.FD		
						(u)	DC.DE - MD.PD		
75.	If in $\triangle ABC$ and $\triangle PQR$, w	ve ha	ave: $\frac{AB}{OR} = \frac{BC}{PR} = \frac{CA}{PC}$	$\frac{1}{2}$, th	en				
			$\Delta PQR \sim \Delta ABC$			(d)	$\Delta BCA \sim \Delta POR$		
76.	While computing the m								
	(a) evenly distributed of			(b)			narks of the classes		
	(c) centred at the lowe	er lir	nits of the classes	(d)	limits of the classes				
77.	The relation between n	near	n, mode and media	n is					
	(a) mode = $(3 \times \text{mean})$	- (2	× median)	(b)	mode = (3 × medi	an) -	- (2 × mean)		
	(c) median = $(3 \times \text{mean})$	n) —	$(2 \times mode)$	(d)	d) mean = $(3 \times \text{median}) - (2 \times \text{mode})$				
78.	Three coins are tossed	sim	ultaneously. What	is th	e probability of get	ting	exactly two heads?		
	(a) $\frac{1}{2}$	ക്ര	$\frac{1}{4}$	(c)	3	(d)	$\frac{3}{4}$		
	4		-		8	(u)	4		
79.	If the points A(1, 2) O(0 (a) $a = b$		and $C(a, b)$ are coll a = 2b	ineai (c)		(A)	a + b = 0		
80.	Two friends were born	• •		. ,		• • •			
50.	birthday?		and your 2000. WI	iut It	, the probability t	۱	may have the same		
	. 1	<i>.</i>	1		2	<i>, -</i> .	1		
	(a) $\frac{1}{365}$	(b)	$\frac{1}{366}$	(c)	$\frac{2}{365}$	(d)	$\frac{1}{183}$		
81.	(sec A + tan A) (1 - sin A	A) =							
	(a) sin A	(b)	cos A	(c)	sec A	(d)	cosec A		

82.	$(\cos^4\theta - \sin^4\theta) =$								
	(a) $1-2\sin^2\theta$	(b)	$1 - 2\cos^2\theta$	(c)	$2 - \sin^2 \theta$	(d)	$2 - \cos^2 \theta$		
83.	$\sin\theta\cos(90^{\circ}-\theta)+\cos(90^{\circ}-\theta)$	sθsi	n (90° – θ) = ?						
	(a) 0	(b)	1	(c)	2	(d)	$\frac{3}{2}$		
84.	•. The cumulative frequency table is useful in determining the								
	(a) mean	(b)	median	(c)	mode	(d)	all of these		
85.	If x_1 's are the midpoin	ts of	the class interval	s of	a grouped data, f_1^{\prime}	s are	e the corresponding		
	frequencies and \overline{x} is	the r	mean, then $\sum f_1(x_1)$	$-\overline{x}$)	=				
	(a) 1	(b)	0	(c)	-1	(d)	2		
86.	• What point on x-axis is equidistant from the points A(7, 6) and B(–3, 4)?								
	(a) (0, 4)	(b)	(-4, 0)	(c)	(3, 0)	(d)	(0, 3)		
87.	The ratio of the total s cm and height 20 cm		ce area to the latera	al su	rface area of a cylir	nder	with base radius 80		
	(a) 2:1	(b)	3:1	(c)	4:1	(d)	5:1		
88.	In a right circular con	e, th	e cross section mad	de by	v a plane parallel to	o the	base is a		
	(a) sphere	(b)	hemisphere	(c)	circle	(d)	a semicircle		
89.	On increasing each of increased by	the r	adius of the base ar	nd th	e height of a cone b	y 20	% its volume will be		
	(a) 20%	(b)	40%	(c)	60%	(d)	72.8%		
90 .	If P(-1, 1) is the midpo	int o	f the line segment	joini	ng A(–3, <i>b</i>) and B(1	, <i>b</i> +	4), then <i>b</i> =		
	(a) 1	(b)	-1	(c)	2	(d)	0		

 $\times \cdot \times \cdot \times \cdot \times \cdot \times$